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Wastewater-based epidemiology (WBE) has been regarded as a potential tool for the prevalence estimation of co-
ronavirus disease 2019 (COVID-19) in the community. However, the application of the conventional back-
estimation approach is currently limited due to the methodological challenges and various uncertainties. This
study systematically performed meta-analysis for WBE datasets and investigated the use of data-driven models
for the COVID-19 community prevalence in lieu of the conventionalWBE back-estimation approach. Three different
data-drivenmodels, i.e. multiple linear regression (MLR), artificial neural network (ANN), and adaptive neuro fuzzy
inference system (ANFIS) were applied to the multi-national WBE dataset. To evaluate the robustness of these
models, predictions for sixteen scenarios with partial inputs were compared against the actual prevalence reports
from clinical testing. The performance of models was further validated using unseen data (data sets not included
for establishing the model) from different stages of the COVID-19 outbreak. Generally, ANN and ANFIS models
showed better accuracy and robustness over MLR models. Air and wastewater temperature played a critical role
in the prevalence estimation by data-drivenmodels, especiallyMLRmodels.With unseen datasets, ANNmodel rea-
sonably estimated the prevalence of COVID-19 (cumulative cases) at the initial phase and forecasted the upcoming
new cases in 2–4 days at the post-peak phase of the COVID-19 outbreak. This study provided essential information
about the feasibility and accuracy of data-driven estimation of COVID-19 prevalence through the WBE approach.
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1. Introduction

The current global pandemic of coronavirus disease 2019 (COVID-
19) has been circulating world-widely for more than a year. As of 15th
February 2021, more than 109 million people were infected and more
than 2.4 million deaths were reported around 216 countries and terri-
tories in the world (WHO, 2020). The surveillance of COVID-19 for its
spreading and resurgence are crucial for the governments to reduce ad-
verse effects of such pandemic and implement timely control measures.
Currently, the surveillance heavily relies on the clinical testing of
individuals, which is highly time-consuming, and might be cost-
prohibitive and region-biased especially in resource-poor regions
(Hart and Halden, 2020a). Moreover, long incubation periods (i.e., the
period between exposure to an infection and appearance of the first
symptom) and asymptomatic patients have been commonly observed,
resulting in a delayed awareness of community transmission through
clinical testing (Backer et al., 2020; Long et al., 2020).

During the pandemic, a significant amount of severe acute respira-
tory syndrome coronavirus-2 (SARS-CoV-2) virus shedding has been
found in stools and urines of infected patients (both symptomatic and
asymptomatic) (Tang et al., 2020; Zhang et al., 2020a; Zhang et al.,
2020b). This provides an alternative approach for the population-wide
COVID-19 prevalence estimation through wastewater-based epidemi-
ology (WBE) to target the affected communities. To date, although suc-
cessful detections of SARS-CoV-2 virus RNA in wastewater have been
reported globally (Haramoto et al., 2020; Hata et al., 2021; Medema
et al., 2020; Randazzo et al., 2020a; Randazzo et al., 2020b; Westhaus
et al., 2020), the usage of WBE in COVID-19 prevalence estimation is
greatly limited due to the complexity and uncertainties associated
with the process. Currently, COVID-19 prevalence estimation using
WBE is based on two equations (two different approaches)
(Eqs. (1) and (2)).

PWBE ¼ F � CRNA

Pc � Rs � E
� 106 ð1Þ

PWBE ¼ CRNA � Qw

Rs � E
� 105 ð2Þ

PWBE: prevalence as the number of COVID-19 cases per 100,000 peo-
ple; F: daily wastewater flow (Mega-liter/day); Pc: population of the
community (×100,000 people); CRNA: concentration of SARS-CoV-2
RNA in wastewater (gene copies/L); Rs: scaling ratio due to in-sewer
decay of SARS-CoV-2 (−); E: daily excretion rate of SARS-CoV-2 by a
COVID-19 patient (gene copies/day∙person); Qw: the average daily
water usage (L/day∙person).

For viral shedding, variations in the magnitude, probability, and du-
ration were commonly observed across different studies. For instance,
themagnitude of viral shedding varied between 102 and 108 RNA copies
per gramof feces and the sheddingmay last for up to 7weeks even after
the patient has been recovered from the illness (Chen et al., 2020; Joynt
and Wu, 2020; Pan et al., 2020; Wölfel et al., 2020; Wu et al., 2020b).
Through a qualitative analysis of 2149 SARS-CoV-2 patients, a positive
proportion of the fecal samples has been found to be 51.8% (95% CI
43.8–59.7%) (van Doorn et al., 2020). After excretion, SARS-CoV-2 RNA
is transported in sewer systems till the sampling location. Although
the fate of SARS-CoV-2 RNA in real sewers remains unclear, its decay
in bulk wastewater was facilitated by longer hydraulic retention time
(HRT) and higher wastewater temperature (Ahmed et al., 2020b;
Weidhaas et al., 2020). The variability of HRT, operational conditions
andwastewater properties led to great uncertainties of Rs. Furthermore,
one recent study observed a ~10-fold increase in composite samples
compared to corresponding grab samples of primary effluent, highlight-
ing variability in the SARS-CoV-2 concentration due to the sampling
technique (Gerrity et al., 2021). These uncertainties make the back-
estimation through conventional WBE difficult and potentially lead to
2

discrepancies between WBE estimated COVID-19 cases and clinically
confirmed cases (Wu et al., 2020a).

In recent decades, the use of data-driven models to solve compli-
cated problems is gaining popularity. Data-drivenmodels have been ap-
plied successfully in various fields including wastewater and sewer
processes (Dalmau et al., 2015; Jiang et al., 2016; Kenny et al., 2009;
Khademi and Behfarnia, 2016; Li et al., 2019). These models ‘learn’ the
patterns of the underlying processes from past data and generalize
new ‘knowledge’ (or mathematical relationships between input and
output data) to predict an output when being given a new set of input
variables from the problem domain (Jiang et al., 2016). Hence, data-
driven models could be a potential tool for the prevalence prediction
with reasonable accuracy before the uncertainties associated with
WBE can be thoroughly delineated. To date, data-driven models have
not been applied in the prevalence prediction of COVID-19 through
the WBE approach.

This study investigated the use of data-driven models to estimate
the prevalence of COVID-19 cases in the community using multi-
national WBE data collected through a systematic literature search.
Three types of data-driven models, i.e., multiple linear regression
(MLR), artificial neural network (ANN), adaptive neuro fuzzy inference
system (ANFIS), were applied and their performance was evaluated for
predicting the prevalence of COVID-19 cases in the area covered by a
wastewater treatment plant (WWTP). The prevalence was chosen as
the only output, with the average clinically testing ratio, SARS-CoV-2
RNA concentration detected in wastewater (corrected by recovery effi-
ciency or not), wastewater temperature, air temperature, inhabitant
population, average daily water consumption, sampling technique,
and precipitation as inputs to the data-driven models. Furthermore, in
real applications, it is normally difficult to obtain a complete input
dataset, thus the robustness and accuracy of predictions using partial
input parameters for each model were assessed in sixteen partial
input scenarios. More importantly, the performance of data-driven
models was evaluated for different stages of the outbreak using unseen
datasets (data not used in model training). Our preliminary findings
demonstrate the applicability and accuracy of data-driven models as a
potential tool for COVID-19 prevalence surveillance and early-warning
at the community level.

2. Materials and methods

2.1. Collection and meta- analysis of wastewater surveillance data

The electronic search for available literature was conducted on
25 January 2021, following PRISMA guidelines (Silverman and
Boehm, 2020) to collect a comprehensive and large set of data. Da-
tabases (i.e., Web of Science core collection, Scopus, and PubMed)
were searched using the term “SARS-CoV-2 AND wastewater”. A
total of 487 unique papers were identified after removing dupli-
cates using the EndNote Reference Manager software. Titles and
abstracts of the retained articles were screened and assessed for el-
igibility following these criteria: 1) reported the detection of SARS-
CoV-2 RNA in raw wastewater; 2) reported clear data regarding the
population size, sampling approach, sampling date, and clinically
confirmed cases in the catchment area; 3) the article is in English
and is peer-reviewed. Relevant articles were further assessed by
full-text reading and finally, 7 articles were included in this study
for establishing the data-driven models. Details of the review pro-
cess are provided in the supplementary information (SI). The
methodology applied in these 7 articles, including sampling, stor-
age and analytical methods (Table S1), was peer-reviewed and
commonly applied in WBE studies for COVID-19, which can be
good representatives of other WBE studies. Other WBE reports
were not included in this study due to the lack of required informa-
tion or inability to provide such information after communicating
with their authors.
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Wastewater surveillance data including SARS-CoV-2 RNA con-
centration in wastewater, and inhabitant population and active
cases (confirmed cases minus recovered cases) in the catchment
area, were summarized from seven recent papers (Ahmed et al.,
2020a; Hata et al., 2021; Kitamura et al., 2020; Medema et al.,
2020; Randazzo et al., 2020a; Randazzo et al., 2020b; Westhaus
et al., 2020). For the studies with data at the pre-peak stage of the
outbreak, cumulative cases in the catchment area of WWTP were
used as active cases. Since the SARS-CoV-2 RNA concentrations
were generally in 102–7 copies/L, logarithmic concentration
data was included as CRNA (log10 copies/L). Active cases were con-
verted to prevalence (P, confirmed COVID-19 cases per 100,000
people). Variations in the SARS-CoV-2 RNA concentration were
observed with a wastewater sample using different concentration,
extraction, and detection approaches (Wu et al., 2020a). A recent
interlaboratory assessment evaluated the efficiency of 36 standard
operating procedures (SOPs) including eight different concentration
methods using the same wastewater sample and 80% of the
recovery-corrected results based on external or internal standards
fell within a band of ±1.15log10 copies/L with high reproducibility
(Pecson et al., 2021). Thus, an indicator variable (Fr) was included
as a categorical factor to different the recovery-corrected results
and non-corrected results as 1 and 0, respectively. Variability in
the SARS-CoV-2 concentration due to composite and grab sampling
was observed (Gerrity et al., 2021), though the impact of time-
proportional or flow-proportional composite sampling and grab
sampling remains unclear. Thus, the sampling technique (ST) was
applied as an indicator variable to categorize grab sampling and
composite sampling as 0 and 1, respectively.

During in-sewer transportation, potential decay of SARS-CoV-2
RNA would also affect the CRNA detected in wastewater samples.
Recent studies found the wastewater temperature (Tw) and HRT
play a significant role in the RNA decay using bulk wastewater
(Bivins et al., 2020). However, Tw and average HRT of the catchment
area were not reported in those 7 selected articles. Hart and Halden
(2020b) showed that Tw can be estimated based on the air temper-
ature globally and reached a good agreement with empirical obser-
vations. Thus the estimated Tw from Hart and Halden (2020b) and
average air temperature (Ta) of the sampling day for specific loca-
tions from Google weather data were included. HRT was found
strongly correlated to the catchment size of a WWTP, ranging from
several minutes to 6–10 h in small and large scale WWTPs, respec-
tively (McCall et al., 2017). Furthermore, the clinically confirmed
cases are generally classified based on Primary Health Networks
(PHNs) or municipal areas, which may not be identical to the cov-
erage of the catchment area. The population coverage of the catch-
ment to the PHNs or municipal area was not reported in these
seven articles. A larger WWTP would generally cover a higher per-
centage of the population in the relevant PHNs or municipal area
(Ahmed et al., 2020a). In addition, it remains unclear how the dis-
tribution of patients in a catchment area impacts the prevalence es-
timation through WBE approach. It was reported the distribution of
drug consumers became more important for the estimation of drug
usage in medium and large catchments (McCall et al., 2017). Thus,
the population size of a catchment area (Pc, ×100,000 person) was
included as a variable accounting for the catchment size. Data-
driven models can also be applied to simulate the decay process
of SARS-CoV-2 RNA in sewers, which can be further applied to pre-
dict the prevalence of COVID-19 in the catchment area. For such a
decay model, the actual concentrations of SARS-CoV-2 RNA in
wastewater before in-sewer transportation (C0) would be required
for training the model. Although some recent studies investigated
the decay of SARS-CoV-2 RNA under laboratory conditions
with bulk wastewater, the hydraulic pattern, operation conditions
(i.e. aerobic or anaerobic), and effects of sewer biofilms etc., were
not considered (Ahmed et al., 2020b; Bivins et al., 2020). Needs
3

remain to obtain data to support a reliable model of in-sewer
decay of SARS-CoV-2.

Significant dilution of SARS-CoV-2 concentration in combined
sewers was observed due to the precipitation inflow (Chavarria-
Miró et al., 2020). Heavy rainfall could also dilute the sewage flow
in separate sewers (Jiang et al., 2013). Precipitation (Pp, mm) and
average daily water usage (Qw, L/person∙day) were collected from
Google weather and governmental report of each country, respec-
tively. More importantly, the clinical testing of individuals largely
depends on their own motivation, contact tracing policy, and cost
of each country. The testing policy, coverage, tests per confirmed
case, contact tracing policy, and test cost of different countries
were summarized and discussed in the supplementary information
(text S2, Table S2). Overall, although the testing practice varies
in each country, the testing coverage were considered adequate
according to WHO guidelines (i.e., positive rates <10%) and
could largely support tracking the COVID-19 prevalence in the
community. In terms of the motivation of individuals for COVID-19
clinical testing, symptom-onset can be a major trigger. However,
SARS-CoV-2 virus shedding has been found in stools and urines of
asymptomatic patients and some patients had symptom onset sev-
eral weeks after the infection (Park et al., 2020; Tang et al., 2020;
Zhang et al., 2020a; Zhang et al., 2020b). A recent meta-analysis es-
timated that the percentage of asymptomatic infection was 15.6%
(95% CI, 10.1%–23.0%), but the actual percentage varied in studies
from different regions and age groups (He et al., 2020). Generally,
a higher testing ratio (people being tested/total population) in an
area would increase the probability of identifying asymptomatic pa-
tients among the population. The testing ratio and testing practice in
the catchment area was not reported in all these seven articles, but
it is publicly available for each country, which can largely reflect
that of the catchment area. Thus, considering the contribution of
asymptomatic patients in virus shedding, the potential impact of
testing policy, and the potential detection windows (i.e. 28 days)
of SARS-CoV-2 for wastewater samples (Ahmed et al., 2020a), the
average testing ratio/1000 people every 30 days of each country
(RT) (https://ourworldindata.org/coronavirus-testing) was included
as a variable for the testing coverage. The positive ratio (confirmed
cases/total testing) was not included as the clinical diagnoses can
take several hours to a couple of days depending on the capacity
of the testing center while the number of total testing is updated
in real-time or within several hours. As all WBE analyses for waste-
water were based on the same method, i.e., reverse transcription-
quantitative polymerase chain reaction (RT-qPCR), the sensitivity
of detection was not included as an input for the data-driven
model in this study.

Since all these 7 publications conducted wastewater sampling
and analysis on different days, the CRNA and PWBE measured at differ-
ent sampling days with raw wastewater were collected from each
publication, along with the explanatory factors (ST, Fr, Tw, Ta, Pc, Pp,
Qw, RT) obtained as described in paragraphs above. Finally, a total
of 163 data sets were summarized from all these 7 articles. Among
these 163 data points, 159 of them were applied for the distance-
based redundancy analysis (db-RDA) analysis and establishing
the data-driven models in the following sections. The rest data
(collected at 4 different days) from (Haramoto et al., 2020) were ap-
plied to assess model performance in Section 2.3.3. These data
points were chosen as a clear record of cumulative cases, daily
new cases, weekly new cases, and new cases in the following 2 or
4 days was reported at the relevant sampling days (to be discussed
in Section 2.3.3). The relevance of explanatory factors in explaining
the distribution patterns of prevalence data from different studies
was analyzed by distance-based redundancy analysis (db-RDA)
using R (ver. 3.31, http://www.R-project.org/). Pearson's correlation
between prevalence data and explanatory factors was calculated
using R.

https://ourworldindata.org/coronavirus-testing
http://www.R-project.org/
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2.2. Data-driven models for estimating community prevalence of
SARS-CoV-2

2.2.1. Multiple linear regression
TheMLR is a statisticalmethod that generates the cause-effect corre-

lation in terms of a linear relationship between a dependent (target)
and some independent variables (inputs). In MLR, the regression func-
tion betweenmultiple input variable (X1, X2,…, Xn) and the dependent
variable (Y) is defined as Eq. (3):

Ŷ ¼ a0 þ∑n
j¼1ajXj ð3Þ

where Ŷ is the model's output, Xj is the independent input variables to
the model, and a0, a1, a2, …, an are the partial regression coefficients.

Considering the potential interaction between any two input param-
eters, the importance of interactions was determined using the F-test.
Then, MLR analysis was performed on the community prevalence of
SARS-CoV-2 (confirmed active COVID-19 cases per 100,000 people)
with explanatory factors including RT, Tw, Ta, Pc, Qw, ST, Pp, CRNA, and Fr
in wastewater using R (ver. 3.6.2, http://www.R-project.org/) with the
whole data sets. The coefficients for each of the input factorswere deter-
mined along with the standard error.

2.2.2. Artificial neural network
ANN is a mathematical modeling approach that simulates the struc-

ture and/or functional aspects of biological neural networks to process
information and produce approximate outcomes (Li et al., 2019). A typ-
ical ANN contains three layers, i.e., input, hidden and output layers,
which are made of interconnected groups of artificial neurons. The gen-
eral procedure of building an ANNmodel uses the steps of training, val-
idation, and test as described previously (Li et al., 2019). Briefly, the
training steps generate the weight of connections between neurons
and an error function, i.e., themean square error (MSE) tomake the out-
put values similar to the target values. Then validation step is applied in-
dependently to find the optimal number of hidden units or determine a
stopping point for ANN (Şahin et al., 2013). Finally, the performance and
accuracy of the machine learning algorithm are evaluated by the test
steps. The detailed structure and function of ANN were described in
the supplementary information.

In this study, ANN is used to predict the COVID-19 prevalence based
on CRNA together with other variables including RT, Fr, Tw, Ta, Pc, Qw, ST,
and Pp as mentioned in Section 2.2.1. To determine the optimal struc-
ture of ANN, the performance of ANNwith various numbers of neurons
in the hidden layer was exhaustively searched using Alyuda Neuro In-
telligence ver. 2.2. The final structure with the best performance was
used to predict the prevalence of COVID-19 using MATLAB (R2019b).
A total of 159 data points as summarized above were used for the
modeling process. The proportion of observations was set as 70%, 15%
and 15% in this study for the training, validation, and test steps for
ANN analysis, respectively. The data included in each step was based
on randomchoice. Based on thedatasets, the sigmoidal tangent function
and a linear activation function were applied for hidden nodes and the
output layer, respectively. Further, the Levenberg-Marquardt (LM) algo-
rithm was selected as the most suitable algorithms in this study.

2.2.3. Adaptive neuro fuzzy inference system
ANFIS, like ANN, is a hybrid artificial intelligence technique, which is

widely accepted for solving complex problems with adequate estima-
tions. In ANN, one of the most significant disadvantages is that the
weight values between interconnected neurons are generated from
the data and could not be explained. In ANFIS, the FIS function performs
like a white box, where the nodes and the hidden layers of the neuron
network are determined precisely by a FIS and allows the model de-
signers to discover how the model achieved its goal (Karaboga and
Kaya, 2019). The ANFIS structure is made of two parts - premise and
consequence parts, which are connected by a network with fuzzy
4

rules. Through the training process, parameters in each part are deter-
mined with an optimization algorithm, and eventually connected by
IF-THEN fuzzy rules (Karaboga and Kaya, 2019). The fuzzy reasoning
mechanism of ANFIS model was described in the supplementary
information.

Similarly, ANFIS was applied to predict the COVID-19 prevalence
using RT, Fr, Tw, Ta, Pc, Qw, ST, and Pp with a total of 159 data points. The
proportion of observations in this study was set as 70%, 15% and 15%
for the training, validation, and test steps, respectively. The data in-
cluded in each step was chosen randomly from the whole dataset. The
final structure with the best performance of ANFIS was built and used
to estimate the prevalence of COVID-19 using MATLAB (R2019b).

2.3. Evaluation of data-driven models for predicting community prevalence
of SARS-CoV-2

2.3.1. Comparison of the performance in prevalence estimation
Three different data-driven models (i.e., MLR, ANN, and ANFIS) as

stated above were constructed using the same dataset. To compare
their performance in predicting SARS-CoV-2 community prevalence, co-
efficients of determination (R2) were employed for all three types of
models.

2.3.2. Assessment of the model robustness with partial input data
In real applications, the availability of a complete input dataset as de-

scribed in Section 2.2.1, might be limited. Thus, it is essential to evaluate
the robustness of these data-drivenmodels with incomplete datasets as
the input. The robustness of eachmodelwith incomplete data input can
serve as an important criterion to guide the application of these data-
driven models.

Considering the practical difficulty, sixteen different combination
scenarios were chosen (i.e., 9 input factors, 8 input factors, 7 input fac-
tors, 6 input factors, 5 input factors, 4 input factors, 3 input factors, 2
input factors, and 1 input factor) (Table 2). These scenarios were se-
lected based on the accessibility of input factors in real applications.
Modelswere built under each input scenario and the accuracy of predic-
tion with MLR, ANN, and ANFIS models was evaluated using R2 values.

2.3.3. Assessment of themodel performance at different phases of COVID-19
outbreak

As aforementioned, all these studies were carried out at the initial
pre-peak stage with a rapid increase of confirmed cases, where cumula-
tive cases can largely represent the active cases. However, with the im-
plication of effective control/protective measures, the daily new cases
gradually decrease to lower numbers after reaching the peak and the
cumulative cases become relatively stable with slow growth (Maier
and Brockmann, 2020). Thus, the application of data-driven models
for the prevalence estimation would potentially differ at different
phases of the outbreak. Recently, significant correlationswere observed
between CRNA in wastewater and daily (p< 0.001) or weekly (p< 0.05)
new cases, for COVID-19 prevalence (Weidhaas et al., 2020). Further-
more, through 74-day monitoring, the concentration of SARS-CoV-2 in
wastewater was found to foreshadow the upcoming cases by 2–4 days
(Nemudryi et al., 2020). The performance of the data-driven models
built in this study for the prevalence estimation, was further validated
using unseen data (i.e., datasets not used for establishing the model)
from the COVID-19 outbreak at the initial stage (i.e., within 1–2 detec-
tion window of SARS-CoV-2 for wastewater samples and before the
number of daily new cases reached its peak) and post-peak stage (i.e.
after the number of daily new cases reached its peak). Data (from four
different sampling days, not used for establishing the models) from
Japan at the initial stage of the outbreak (Haramoto et al., 2020), and a
study (not included in the seven studies used for establishing the
model) from USA (Sherchan et al., 2020) at the post-peak phase of the
outbreak,were applied to assess the performance of data-drivenmodels
established in this study. Due to the data availability, the sampling

http://www.R-project.org/
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technique (ST) and the SARS-CoV-2 concentration (CRNA) were summa-
rized from the report. The prevalence estimated by data-driven models
with ST, CRNA, and Ta as inputs was compared against the prevalence de-
termined by cumulative cases (Pcum), daily new cases (Pday), weekly
new cases (Pweek), and new cases in the following 2 or 4 days (P2d, P4d).

3. Results and discussion

3.1. Meta-analysis for the correlation between the prevalence data and
explanatory factors

Multinational data were collected from 7 publications from 5 coun-
tries (1 each for Australia Germany, and the Netherlands, 2 each for
Japan and Spain). Through Pearson's correlation analysis, RT, Tw, and Ta
showed stronger and positive correlations with prevalence data than
other factors. A higher RT was expected to be related to a higher
COVID-19 prevalence. All these 7 studies were carried from March to
May 2020, where the air and wastewater temperature gradually in-
creased alongwith the COVID-19 development, resulting in the positive
Fig. 1. Pairwise Pearson's correlation plot between prevalence data (PWBE) and the nine explan
coefficient (bigger circle= stronger link; blue=positive correlation and red=negative correla
explanatory factors. Prevalence data from 7 publicationswere identified with different colors (P
in the RDA axes indicates the % of the total variation explained by each RDA axes (B).
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correlation between the prevalence and Tw or Ta. Conventionally, CRNA
was considered as the most important factor for WBE studies to evalu-
ate the COVID-19 development at the community level, where a linear
relationship or strong correlation between CRNA and the prevalence
data has been observed (Medema et al., 2020). However, for multi-
national level and national level analysis, the correlation between CRNA
and the prevalence was limited (Fig. 1A, Fig. S1). Even with the data of
each publication, a strong positive correlation between PWBE and CRNA
was only observed in two studies among these seven studies (Fig. S1).
The strong positive correlation is likely caused by the limited data size
in these two studies, (i.e. 2 data points and 18 data points, respectively).
This implies that CRNA cannot be used as the sole indicator for the
prevalence estimation or the comparison among different countries.
This could be causedby1) theanalytical uncertainty ofCRNA; 2)potential
in-sewer decay of SARS-CoV-2 RNA; 3) sampling technique. Analytical
uncertainty was found as one of the major uncertainties for COVID-19
prevalence estimation through WBE approach (Li et al., 2021).
Variations in the recovery efficiency of the RNA concentration, extrac-
tion, and detection approaches were commonly observed, leading to
atory factors. The color and size of the circles indicate the strength of Pearson's correlation
tion) (A). The db-RDAdiagram showing the relationship between the prevalence data and
1-P7), and the countries of the 7 publicationswere differentiated with shapes. The % value



Table 1
MLR model coefficients using the complete WBE dataset for the prediction of COVID-19
community prevalence.

Coefficient Estimate Std. error t value P(>|t|)a Significanceb

Intercept 579.39 151.83 3.82 1.96 × 10−4 ***
RT −20.60 3.85 −5.34 3.24 × 10−7 ***
Tw 14.36 2.05 6.99 8.07 × 10−11 ***
Ta 8.07 1.03 7.81 8.68 × 10−13 ***
Pc −1.33 0.58 −2.29 0.02 *
CRNA −4.97 5.39 −0.92 0.36
Fr 10.26 9.79 1.05 0.30
Qw −2.38 0.44 −5.35 3.09 × 10−7 ***
ST −149.18 33.87 −4.41 1.98 × 10−5 ***
Pp 0.68 6.44 0.11 0.92

a P(>|t|) is the probability value using the t-test.
b Significance codes represent P values of 0–0.001: ***; 0.001–0.01: **; 0.01–0.05: *.

X. Li, J. Kulandaivelu, S. Zhang et al. Science of the Total Environment 789 (2021) 147947
the variability of the CRNA even with the same wastewater sample
(Ahmed et al., 2020c). Although a recent interlaboratory assessment
found that a variety of methods could produce reproducible results
with the inclusion of surrogate viruses to quantify the recovery effi-
ciency (Pecson et al., 2021), only 2 out of the 7 publications included
in this study quantified the recovery efficiency and reported the
recovery-corrected concentration data. Furthermore, wastewater is a
complex matrix, the presence and concentrations of suspended solids
concentration, dissolved oxygen, organic matters, humic-like sub-
stances likely vary due to the socioeconomic condition (i.e. age, gender,
income etc.) of a country or area, which could also greatly impact the
viral adsorption and decay in wastewater, resulting in the uncertainty
of CRNA (Petala et al., 2020). Furthermore, the in-sewer decay of SARS-
CoV-2 RNA in wastewater was greatly facilitated by higher wastewater
temperature and longer HRT, leading to a lower CRNA detected in waste-
water (Ahmed et al., 2020b). One recent study observed a ~ 10-fold in-
crease in composite sampling in comparison to corresponding grab
sampling of primary effluent samples (Gerrity et al., 2021), which
could be another reason for the unexpected weak correlation between
CRNA and PWBE. Although CRNA is indispensable for COVID-19 prevalence
estimation throughWBE approach, other parameters such as wastewa-
ter temperature, air temperature, catchment size etc., are also critical for
the accuracy of prediction. For future COVID-19 prevalence studies
through WBE approach, it is highly recommended to include these pa-
rameters in the report. In addition, negative correlations were observed
with Qw and Pp for the prevalence data. This revealed the inherent pat-
tern of the collected datasets, where a catchment area with higher Qw

and Pp were related to a lower prevalence.
A clear national-wide difference was observed with the prevalence

data through db-RDA analysis. However, the difference among data of
the same country was negligible (Fig. 1). This result suggests a
between-country difference in the COVID-19 development during the
study period. QW and Pp had stronger correlations with the prevalence
data in Australia and Japan than in other countries. Ta and Fr were
more closely related to the prevalence data in Spain and Australia. RT,
Tw, CRNA and Pc, showed stronger correlations with the prevalence data
in Spain and Japan than in other countries. These regional-based varia-
tions suggest that a universal prevalence estimation is prone to the im-
pact of differences from country to country.

The combination of nine explanatory factors explained 50.04%
(RDA1 + RDA2) of the variations of prevalence across these 7 publica-
tions. As discussed above, various factors such as the recovery efficiency
and wastewater matrix could potentially impact CRNA detection. Due to
the unavailability of such kind of information for all datasets, these
factors were not included in this study and may require further
investigations.

3.2. Estimation of SARS-CoV-2 community prevalence using theMLRmodel

The interactions between input variables were found to be insignif-
icant in the second order using F-test (Table S3), which suggests that all
the input variables are independent. Thus, theMLRmodel is built with-
out interaction factors. Through theMLR analysis, an equation was gen-
erated using the whole dataset to estimate the COVID-19 community
prevalence (PWBE) (Eq. (4)) and the uncertainty and significance of the
regression coefficients were determined as shown in Table 1.

PWBE ¼ 579:39−20:60� RT þ 14:36� Tw þ 8:07� Ta−1:33
� Pc−4:97� CRNA þ 10:26� Fr−2:38� Qw−149:18
� ST−0:68Pp ð4Þ

Among all the input variables, Tw and Tawere found as themost sig-
nificant factors with p values of 8.07 × 10−11 and 8.68 × 10−13, respec-
tively (Table 1). Both Tw and Ta had positive coefficients, suggesting that
with the same CRNA alongwith other factors, the actual prevalence could
be higher in sewers with higher temperatures. This is consistent with
6

the significant role of wastewater temperature in the SARS-CoV-2 RNA
decay, where a higher degradation rate of SARS-CoV-2 RNA was ob-
served in wastewater with higher wastewater temperatures (Ahmed
et al., 2020b; Weidhaas et al., 2020). Since the Tw was estimated using
Ta along with other parameters associated with soil conditions, the im-
portance of Ta in estimated prevalence is likely associated with the role
of Tw in the RNA decay process. The significance of Tw and Ta highlights
the importance of in-sewer decay of SARS-CoV-2 RNA for the preva-
lence estimations.

RT and Qw were also found as significant parameters for the preva-
lence estimation with p values at around 10−7 (Table 1). As the preva-
lence data applied in the model was calculated based on the active
cases confirmed by clinical testing, the negative coefficient of RT
(−20.60) suggests a smaller difference betweenWBE-estimated preva-
lence (PWBE) and clinically confirmed prevalence with a higher testing
coverage. This is likely related to the different testing policies during
the studyperiod andpresence of asymptotic patients and different incu-
bation periods for patients. For instance, among these countries, Japan
had the lowest testing coverage; and clinical testingwas only conducted
for peoplewhohad symptoms and belong to specific groups such as key
workers, hospital patients, or travelers from overseas (Table S2). In con-
trast, Australia had the highest RT as an open public testing policy was
applied, with testing available to both symptomatic and asymptotic
people. Thus, a higher testing coverage could potentially revealmore as-
ymptotic patients as virus sheddingwas also observed in asymptotic pa-
tients (Tang et al., 2020; Zhang et al., 2020a; Zhang et al., 2020b).Qwhad
a negative coefficient value in the MLR model although a positive rela-
tionship was expected according to Eq. (2). This is likely related to the
inherent pattern of the data sets collected where a higher prevalence
was related to the region with lower Qw as discussed in Section 3.1.

ST was found as one of the major significant factors (p = 1.98 ×
10−5) with a negative coefficient (−149.18). The negative coefficient
of ST suggests that with the same CRNA alongwith other factors, the esti-
mated prevalence of grab samples tends to be higher than that of com-
posite samples. This might be related to the diurnal toilet use pattern.
About 10-fold increase of SARS-CoV-2 RNA concentration in composite
samples was observed in comparison to the grab samples in a recent
study (Gerrity et al., 2021). However, to date, the exploration of poten-
tial impacts of sampling techniques on the SARS-CoV-2 RNA concentra-
tion in wastewater, and COVID-19 prevalence estimation throughWBE
approach is limited, which still needs further investigations. In addition,
Pc is also a significant input factor for the prevalence estimation (p =
0.02) (Table 1). Conventionally, a larger catchment area with higher Pc
is related to a higher HRT in the catchment area (McCall et al., 2017).
The role of Pc in the prevalence estimation could be related to the in-
sewer decay of SARS-CoV-2 RNA, although the impact of sewer HRT re-
mains unclear to date.

Conventionally, CRNA was regarded as the predominant parameter
for COVID-19 prevalence estimationwhere a strong positive correlation
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or linear relationshipwas expected. However, inMLRmodels, the statis-
tical significance of CRNAwas limited (p=0.36), and CRNA had a negative
coefficient for the prevalence estimation. This is consistentwith the cor-
relation analysis in Section 3.1, where the correlation between CRNA and
the prevalence was limited for multi-national level and national level
analysis. Furthermore, CRNA also did not play a significant role in PWBE es-
timation in most of the articles (except one Germany study) and sepa-
rate national data sets (Table S4). As discussed in Section 1, this is
likely related to analytical uncertainty of CRNA, in-sewer decay of
SARS-CoV-2 RNA and sampling approach. This suggests that although
CRNA is critical for confirming the existence of COVID-19 patients in
catchment areas, the estimation of the prevalence cannot predomi-
nantly rely on CRNA. Other factors such as Tw, Ta and ST, are also impor-
tant for PWBE estimation.

In this study, Pp was found as an insignificant input for prevalence
estimation (Table 1). It is worthwhile to mention that in this study, as
most of the sampling was carried out in dry weather conditions, the
Pp was within 0–2 mm in the dataset. Recently, significant dilution of
SARS-CoV-2 concentration in combined sewers has been observed due
to the storm water or precipitation inflow (Chavarria-Miró et al.,
2020). Thus, the potential impact of a higher range precipitation re-
quires future investigations. The R2 value achieved by the MLR model
was 0.58, suggesting that 58% of the variability in the observed preva-
lence could be captured and explained by this linear model. The limited
performance of MLR could be caused by the varied impact of each factor
on the data fromdifferent countries or the lack of other parameters such
as wastewater matrix as discussed in Section 3.1. Furthermore, the rela-
tionship between the prevalence and the input parameters here is also
potentially nonlinear.

3.3. Estimation of SARS-CoV-2 prevalence using ANN and ANFIS models

Following the regression analysis, ANN and ANFIS models were
established for estimating COVID-19 prevalence using the same dataset.
The final structure of the ANN model was established with 9 input, 9
hidden, and 1 output neurons after optimization. To select the best per-
formance model, the validation and test steps were performed to pre-
vent overfitting by measuring the error with independent datasets.
During the training process, ANN achieved a satisfactory performance
with an R2 value of 0.90. Consistent performances were observed in
Fig. 2. The outputs of the ANN model (A) and ANFIS model (B), and their correlations with
prevalence of active COVID-19 cases reported from the clinical testing. The output is the value
The Y = T line is where the y-axis value equals the target value.
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validation and test datasets with the R2 value of 0.90 and 0.80, respec-
tively (Fig. S2). This indicates that the model established a clear rela-
tionship between the input factors and the prevalence reported.
Overall, the application of ANNmodels greatly improved the prediction
accuracy than MLR models with the overall R2 value at 0.88, although
few scattered data points as likely outliers were observed (Fig. 2A).

Following the ANN, ANFIS was built for the SARS-CoV-2 prevalence
prediction. The final structure of ANFIS model has 9 inputs and 11
rules (Fig. S3). Containing ‘IF’ and ‘THEN’ parts of the fuzzy inference
system, these rules are sensitive to input parameters and determine
theway the input parameters change in order tominimize themeasure-
ment errors (Ausati and Amanollahi, 2016). ANFIS model achieved sat-
isfactory performance in predicting the SARS-CoV-2 prevalence. The R2

values obtained for the whole dataset was 0.79, which was slightly
lower than ANN models (Fig. 2B). Consistent performances were ob-
served for training, validation, and test datasets, with R2 values at
0.94, 0.76 and 0.87, respectively (Fig. S4). It implies that both ANN and
ANFIS models were capable of estimating the relationship adequately
between COVID-19 prevalence and the chosen input factors. In compar-
ison to ANFIS, ANN showed a slightly better performance especially for
validation and test datasets. It could be due to the relatively small scale
of the dataset compiled in this study and the FIS rulesmay becomemore
useful when the datasets grow with more available WBE studies in the
future. Since the outputs of ANN and ANFIS models were generated
based on the interconnected neurons, the impact of each parameter
on the prevalence estimation was not differentiated. Instead, R2 was
employed to compare the performance of these models. Overall, both
ANN and ANFIS showed a highly satisfactory performance with only a
few scattered data points which are likely some outliers in the compiled
dataset (Fig. 2). These outliers could be due to three reasons: 1) inaccu-
rate value of the determined parameters; 2) natural variance of the pa-
rameters; 3) impact from other variables that were not included in the
current model. The inaccurate value is potentially caused by either the
inaccuracy of the CRNA detected inwastewater (analytical uncertainties)
or there were missed cases by clinical testing. The natural variance of
parameters is likely associated with the virus shedding uncertainty,
sampling uncertainty etc. The impact of other potential affecting vari-
ables is mainly related to the decay or retention of SARS-CoV-2 RNA in
sewers, such as wastewater temperature variations, HRT, wastewater
matrix as discussed in Section 3.1.
the actual prevalence reported from clinical tests using all of the datasets. Target is the
obtained from the model predicting the SARS-CoV-2 prevalence using input parameters.
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3.4. Analysis of model robustness subject to partial input data

In real-life applications, a complete datasetwith all the input param-
eters is generally limited. In particular the current practice of WBE is
mainly focused on detecting the concentration of SARS-CoV-2 RNA in
wastewater without considering other relevant parameters. Robustness
analysis is thereby applied to explore critical factors and the most suit-
able input scenario for the prevalence prediction (Table 2).

MLR models were fairly sensitive to partial inputs, especially Ta and
Tw. Without Tw or Ta, R2 value of MLR models dropped from 0.55 (sce-
nario 4) to 0.43 (scenario 5), and 0.32 (scenario 6), respectively. Al-
though RT, Pc, Qw and ST were also identified as significant inputs for
MLR models with the complete dataset (Table 1), as long as Tw, Ta, and
CRNAwere included, theMLRmodels can still reach a reasonable predic-
tion with R2 above 0.44 (Scenario 9). However, the overall prediction
performance of MLR models is limited likely due to the linear nature.

It is evident that both ANN and ANFIS greatly improved the accuracy
in estimating COVID-19 prevalence, with complete and partial input
scenarios (Table 2). In particular, superior performance of ANNwas ob-
served over ANFIS with all input scenarios, especially for partial inputs.
ANN and ANFIS achieved adequate performance in 9/15 and 5/15 sce-
narios, with R2 around or higher than 0.8 (bolded scenarios in
Table 2). As long as Ta and CRNA were included, ANN achieved relatively
high accuracy in estimating the prevalence, with R2 value higher than
0.77. Thus, ANN is highly recommended for future WBE estimation in
lieu of the conventional WBE back-estimation equation, based on the
improved accuracy and high robustness to the partial input scenarios,
especially for the application incorporating data from different
countries.

Nevertheless, the partial input compromised the performance of all
data-drivenmodels to some extent in all the scenarios (Table 2). In par-
ticular, with CRNA as the only input (indispensable for WBE) in scenario
16, the MLR model reached the worst performance with R2 at 0. Al-
though ANN slightly improved the performance in comparison to
MLR, the accuracy of predictionwas still limited (R2= 0.33). To achieve
an accurate prediction, it is thus essential to collect as many input vari-
ables as possible.
Table 2
Coefficient of determination (R2) determined for robustness analysis using data-driven
models in predicting SARS-CoV-2 prevalence with partial input parameters.

Scenario Coefficient of determination (R2)

MLR ANN ANFIS

1. RT, Tw, Ta, Pc, CRNA, Fr, Pp, Qw, ST 0.58 0.88 0.79
2. RT, Tw, Ta, Pc, CRNA, Fr, Qw, ST 0.57 0.87 0.70
3. RT, Tw, Ta, CRNA, Fr, Qw, ST 0.56 0.84 0.45
4. RT, Tw, Ta, CRNA, Qw, ST 0.55 0.85 0.44
5. RT, Ta, CRNA, Qw, ST 0.43 0.76 0.60
6. RT, Tw, CRNA, Qw, ST 0.32 0.83 0.82
7. RT, Tw, Ta, CRNA, Qw 0.51 0.75 0.84
8. RT, Tw, Ta, CRNA, ST 0.48 0.84 0.81
9. Tw, Ta, CRNA 0.44 0.83 0.81
10. Ta, CRNA, Qw 0.41 0.74 0.54
11. Tw, CRNA, Qw 0.30 0.82 0.79
12. RT, Ta, CRNA 0.35 0.70 0.58
13. RT, Tw, CRNA 0.30 0.73 0.72
14. Ta, CRNA, ST 0.32 0.77 0.48
15. Tw, CRNA 0.30 0.72 0.54
16. CRNA 0 0.33 0.21

Note: RT, average testing ratio/1000 people every 30 days, Tw, wastewater temperature
(°C); Ta, air temperature (°C); Pc, community population (×100,000 person); CRNA, the
virus RNA concentration (log10 copies/L) inwastewater; Fr, a categorical factor to different
the recovery-corrected results and non-corrected results for CRNA; Qw, average daily water
consumption (L/person∙day); ST, sampling technique (grab or composite); and Pp, precip-
itation (mm).
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3.5. Applications of data-driven models in different stages of COVID-19
outbreak

To further test the performance of data-driven models with unseen
data, two studies that were not included in establishing the models
were selected. Due to the limitation of other factors, the Ta, ST and
CRNA were collected from these studies and applied to relevant MLR,
ANN and ANFIS models built in the above sections. Since ANN model
showed better performance with partial inputs (Table 2), the outputs
from ANN was plotted against the prevalence determined by cumula-
tive cases (Pcum), daily new cases (Pday), weekly new cases (Pweek) and
upcoming new cases in the following 2 or 4 days (P2d, P4d) for the out-
break at the initial pre-peak phase in Japan (Fig. 3A) and post-peak
stage in the USA (Fig. 3B).

It is clear that the ANN model performance for the initial and post-
peak phases of the outbreak is different. For the pre-peak phase, outputs
from ANN model correlated best with Pcum though some variations
(within 4 people/100, 000 people) were observed (Fig. 3A). This is
in line with the datasets used for the training of the ANN model,
suggesting that for the initial phase of the outbreak, the ANN model
can reasonably estimate the Pcum with unseen data. In contrast, during
the post-peak phase of the COVID-19 outbreak, outputs from the ANN
model better represented P2d and P4d than others (Fig. 3B). This is likely
related to the progression of an outbreak over time. In the initial phase,
the confirmed and cumulative cases increase exponentially (Maier and
Brockmann, 2020), which thereby can largely represent the number of
patients excreting SARS-CoV-2. In contrast, in the post-peak phase, con-
sidering the recovery, hospitalization, and decease of the confirmed pa-
tients, the real-time prevalence of COVID-19 in the catchment area
cannot be represented by Pcum. Furthermore, with the implication of ef-
fective control and protective measures, the daily new cases gradually
decreased to lower numbers after the peak and the cumulative cases be-
come relatively stable with slow growth (Maier and Brockmann, 2020).
This can be observed by the 1 to 2 orders of magnitude higher Pcum than
Pday, Pweek, P2d and P4d (Fig. 3B). The better representative of model out-
puts for P2d and P4d is consistent with a recent report, where changes in
CRNA foreshadowed the increase in positive tests by 2–4 days (Nemudryi
et al., 2020). As currently most of the countries surpassed the initial
phase, this forecasting of the COVID-19 community prevalence for the
following 2–4 days provides a promising tool for the early warning of
the COVID-19 resurgence (the so-called second wave) in a community.
In addition, in comparison to MLR and ANFIS models, better perfor-
mance was observed with ANN model (Fig. S5), which is consistent
with the robustness test (Table 2).

4. Limitations and future research needs

Through the systematic literature search, seven currently available
studies from five countries were included in this study. Nine explana-
tory factors covering the testing coverage, SARS-CoV-2 RNA concentra-
tion (recovery efficiency corrected or not), wastewater temperature, air
temperature, population size, water usage pattern, precipitation and
sampling technique were adapted. The meta-analysis revealed that
these factors explained about 50% of the variations of the multi-
national prevalence data based on redundancy analysis. Many other
factors such as wastewater property, analytical uncertainties, and com-
munity socioeconomic factors such as (age, gender, income, etc.) were
not included due to the unavailability of such kind of information. The
impact of these factors on the prevalence estimation through WBE
approach remains unknown and requires further investigations. In
addition, the articles included in this study preserved samples
under different temperatures (i.e. on ice, 4 °C, −20 °C or −80 °C)
for several hours to a couple of days (Table S1). Recent studies indi-
cate the SARS-CoV-2 RNAwas rather stable at 4 °C for at least 14 days
(Ahmed et al., 2020b; Chin et al., 2020), while a review stated that
freezing and de-freezing the sample from −20 °C or −80 °C could
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potentially lead to degradation of the genetic material of SARS-CoV-2
(Alygizakis et al., 2021). To date, the impact of preservation strate-
gies and time on the SARS-CoV-2 RNA concentration detected in
wastewater remains unclear. Thus, the preservation conditions
were not included in the models, of which the impact on the preva-
lence estimation requires further investigations.

Wastewater temperature and air temperature were found as signif-
icant factors for the prevalence estimation in all three types of data-
driven models, which could be potentially related to the importance
of the decay of SARS-CoV-2 RNA inwastewater. However, thewastewa-
ter temperature was not recorded in most WBE publications, and the
data used in this study was estimated from a previous modeling ap-
proach. Thus, both wastewater temperature and air temperature were
included in the models to accommodate different input scenarios of
WBE studies. For futureWBE studies, a comprehensive record of the an-
alytical approach, RNA recovery efficiency, wastewater parameters
(such as temperature, suspended solids, dissolved oxygen and biologi-
cal oxygen demand), and socioeconomically factors are highly recom-
mended to be included.

This is a proof-of-concept study for the application of data-driven
models in multi-national or global COVID-19 prevalence estimation
through WBE approach. Due to the limited size and availability of the
explanatory factors of compiled data and the nature of data-driven
models, ANN and ANFIS models in this study were built with the best
performance under the current available dataset. In addition, the on-
going vaccination progresswould potentially lead to a lower ormore fo-
cused testing coverage of the population, whichmay affect the accuracy
of the established data-driven models. However, with future investiga-
tions and more detailed datasets, the ANN and ANFIS models can be
improved progressively by training with accumulated WBE data, to
reduce the uncertainties, and accommodate the vaccination progress
for the prevalence prediction. The mortality rate due to COVID-19 is
also critical for disease surveillance. Recent studies revealed that the
prevalence of mortality were more closely related to the age group
(>65 years vs. < 65 years), gender, and the existing or historical disease
conditions such as obesity, hypertension, diabetes, cardiovascular
disease, and cancer, rather than the COVID-19 prevalence (Neil et al.,
2020; Noor and Islam, 2020). Thus, the mortality rate was not
considered as the output from the data-driven models established in
this study using data from WBE studies. However, the data-driven
approaches can be applied for future mortality rate prediction with
the inclusion of relevant input parameters such as the socioeconomic
parameters (i.e., age, gender, education level, etc.) and health condition
(i.e., obesity, hypertension, diabetes, etc.).

5. Conclusions

This study systematically investigated the use of data-drivenmodels
as an efficient prediction tool for the COVID-19 community prevalence
9

in lieu of the conventional WBE back-estimation approach. This leads
to the following conclusions:

• ANN and ANFIS are commendable candidate models for the estima-
tion of COVID-19 community prevalence with high accuracy. In com-
parison, MLR is not recommended due to its limited prediction
capability.

• Although SARS-CoV-2 concentration in wastewater is indispensable
for WBE, other relevant input parameters are also important to en-
hance the estimation accuracy. Especially, air temperature andwaste-
water temperature are critical parameters for the prevalence
estimation.

• ANN model showed strong robustness than the more complicated
ANFIS when subject to partial data sets of input variables and unseen
data sets.

• The ANN model can reasonably estimate the prevalence of COVID-19
in the pre-peak phase of the outbreak and forecast the upcoming new
cases in 2–4 days in the post-peak phase.
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